新版本,值得被看見! #GateAPP煥新體驗
🎁 Gate APP 更新至最新版本 v8.0.5,在廣場發帖分享你的真實使用感受,贏取 Gate 獨家聖誕禮盒和倉位體驗券
參與方式
1. 下載並更新 Gate APP 至 v8.0.5 版本
2. 發布廣場帖文,並帶上話題:#GateAPP焕新体验
3. 在帖文中分享你對新版本的真實體驗,例如:
新版本功能亮點與優化
操作流暢度與界面變化
交易或行情體驗改進
你最喜歡的一項更新
對 Gate 廣場的更新體驗
你的建議
4. 內容越真實、互動越多,獲獎機會越大
分享參考(可選)
我剛更新到 Gate v8.0.5
最讓我驚喜的功能是……
最喜歡的改進是……
總體評價: 80分,我的建議是....
📅 活動時間 :即日起 — 1月3日 23:59
活動獎勵
🏆 價值獎:Gate 聖誕禮盒 × 5
🍀 幸運獎:$50 倉位體驗券 × 10
活動規則
須更新至 v8.0.5 版本參與
內容須爲原創真實體驗
必須帶指定活動話題
禁止違規內容與刷量行爲
大家都知道,在金融、醫療、法律等垂直應用領域,採用大型AI模型的最大障礙是"結果的幻覺"問題,這些結果在實際應用場景中無法滿足準確性的要求。如何解決這個問題?最近,@Mira_Network 啟動了公共測試網絡,提供了一套解決方案,所以我來告訴你,事情是這樣的:
首先,大型AI模型的工具有 "幻覺 "的情況,這些情況所有人都可能感受到,主要原因有兩個:
AI LLM的訓練數據不足夠全面,儘管數據量已經非常龐大,但仍然無法涵蓋一些小眾或專業信息,在這種情況下,AI往往會出現"創造性補充",這反過來會導致一些實時錯誤;
AI LLMs 本質上依賴於 "概率抽樣",它涉及到在訓練數據中識別統計模式和相關性,而不是實際的 "理解"。因此,概率選擇的隨機性、學習結果的不一致性和推理可能導致 AI 在處理高精度事實問題時出現錯誤;
如何解決這個問題?在康奈爾大學的ArXiv平臺上發表了一篇文章,描述了幾種模型的聯合驗證方法,以提高LLMs結果的可靠性。
簡單的理解是首先允許主模型生成結果,然後結合多個驗證模型進行“多數投票分析”,以減少模型中出現的“幻覺”。
在一系列下探中發現,這種方法可以將AI輸出的準確性提高到95.6%。
因此,毫無疑問,需要一個分佈式平臺來驗證,以管理和核實主模型與驗證模型之間的合作過程。Mira Network 是這樣一箇中介網絡,專門為 AI LLMs 的驗證而創建,它在用戶與基礎 AI 模型之間建立了可靠的驗證層。
由於這一網絡的存在,驗證級別可以實現集成服務,包括隱私保護、確保準確性、可擴展設計、標準化API接口及其他集成服務,同時在不同的細分應用場景中,AI的植入能力可以通過降低AI LLM的輸出幻覺來擴展,這也是在通過加密驗證的分佈式網絡實施AI LLM項目過程中的一種實踐。
例如,Mira Network 分享了幾個區塊鏈在金融、教育和環境領域的案例,以證明:
在Gigabrain交易平臺上集成Mira後,系統可以增加一個驗證市場分析和預測準確性的層級,通過過濾不可靠的提議,從而提高AI交易信號的準確性,使AI LLMs在DeFi場景中的應用更加可靠。
Learnrite 使用 mira 來驗證由人工智能生成的標準化測試題,使教育機構能夠在不損害教育測試內容的準確性的情況下,以規模使用人工智能創建的內容,以支持嚴格的教育標準;
Kernel 區塊鏈項目利用 Mira 的 LLM 共識機制,將其集成到 BNB 生態系統中,創建一個去中心化的 DVN 驗證網絡,為在區塊鏈上執行 AI 計算提供一定程度的準確性和安全性。